Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
1.
Proteomics ; 24(9): e2300312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446070

RESUMO

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-ß signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.


Assuntos
Peroxissomos , Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Peroxissomos/metabolismo , Peroxissomos/virologia , Vírus de RNA/fisiologia , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Proteínas de Insetos/metabolismo , Transdução de Sinais , Interações Hospedeiro-Parasita
2.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485887

RESUMO

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Assuntos
Criação de Abelhas , Infestações por Ácaros , Varroidae , Animais , Abelhas/parasitologia , Abelhas/fisiologia , Varroidae/fisiologia , Costa Rica , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Mel/análise , Comportamento de Nidação
3.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055946

RESUMO

The ectoparasitic mite, Varroa destructor (Anderson and Trueman), is the leading cause of western honey bee colony, Apis mellifera (L.), mortality in the United States. Due to mounting evidence of resistance to certain approved miticides, beekeepers are struggling to keep their colonies alive. To date, there are varied but limited approved options for V. destructor control. Vaporized oxalic acid (OA) has proven to be an effective treatment against the dispersal phase of V. destructor but has its limitations since the vapor cannot penetrate the protective wax cap of honey bee pupal cells where V. destructor reproduces. In the Southeastern United States, honey bee colonies often maintain brood throughout the year, limiting the usefulness of OA. Prior studies have shown that even repeated applications of OA while brood is present are ineffective at decreasing mite populations. In the summer of 2021, we studied whether incorporating a forced brood break while vaporizing with OA would be an effective treatment against V. destructor. Ninety experimental colonies were divided into 2 blocks, one with a brood break and the other with no brood break. Within the blocks, each colony was randomly assigned 1 of 3 treatments: no OA, 2 g OA, or 3 g OA. The combination of vaporizing with OA and a forced brood break increased mite mortality by 5× and reduced mite populations significantly. These results give beekeepers in mild climates an additional integrated pest management method for controlling V. destructor during the summer season.


Assuntos
Acaricidas , Criação de Abelhas , Abelhas , Ácido Oxálico , Varroidae , Animais , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Himenópteros/efeitos dos fármacos , Himenópteros/parasitologia , Ácido Oxálico/farmacologia , Estações do Ano , Varroidae/efeitos dos fármacos , Volatilização , Acaricidas/farmacologia , Criação de Abelhas/métodos , Cruzamento/métodos
4.
J Virol ; 97(12): e0114923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966226

RESUMO

IMPORTANCE: The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.


Assuntos
Abelhas , Vetores de Doenças , Especificidade de Hospedeiro , Parasitos , Varroidae , Replicação Viral , Vírus , Animais , Abelhas/parasitologia , Abelhas/virologia , Parasitos/fisiologia , Parasitos/virologia , Varroidae/fisiologia , Varroidae/virologia , Vírus/crescimento & desenvolvimento , Vírus/patogenicidade , Interferência de RNA
5.
BMC Res Notes ; 16(1): 122, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365587

RESUMO

OBJECTIVE: The purpose of this data set is to investigate differences in RNA-Seq transcriptome profiles between Acarapis woodi-infested and uninfested Japanese honey bees (Apis cerana japonica). The data set is strengthened by data collected from different body parts (head, thorax, and abdomen). The data set will support future studies of molecular biological changes in mite-infested honey bees. DATA DESCRIPTION: We collected 5 mite-infested and 5 uninfested A. cerana japonica workers from each of 3 different colonies (designated as A, B, and C). Workers were dissected into 3 body sites (i.e., heads, thoraces, and abdomen), and 5 of each body site were pooled together for RNA extraction, generating a total of 18 RNA-Seq samples (2 infection status × 3 colonies × 3 body sites). FASTQ data files of each sample that were generated by a DNBSEQ-G400 sequencer with the 2 × 100 bp paired-end sequencing protocol are available in the DDBJ Sequence Read Archive under accession number DRA015087 (RUN: DRR415616-DRR415633, BioProject: PRJDB14726, BioSample: SAMD00554139-SAMD00554156, Experiment: DRX401183-DRX401200). The data set is a fine-scale analysis of gene expression in the mite-infested A. cerana japonica workers because 18 RNA-Seq samples are separated by 3 body sites.


Assuntos
Abelhas , Ácaros , Animais , Abelhas/genética , Abelhas/parasitologia , RNA-Seq , Traqueia , Transcriptoma
6.
Parasitology ; 150(8): 744-753, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157059

RESUMO

Stylops ater is an endoparasite of the mining bee Andrena vaga with extreme sexual dimorphism and hypermetamorphosis. Its population structure, parasitization mode, genetic diversity and impact on host morphology were examined in nesting sites in Germany to better understand this highly specialized host­parasite interaction. The shift in host emergence due to stylopization was proven to be especially strong in A. vaga. Around 10% of bees hosted more than 1 Stylops, with at maximum 4. A trend in Stylops' preference for hosts of their own sex and a sex-specific position of extrusion from the host abdomen was found. Invasion of Andrena eggs by Stylops primary larvae was depicted for the first time. Cephalothoraces of female Stylops were smaller in male and pluristylopized hosts, likely due to lower nutrient supply. The genes H3, 18S and cytochrome c oxidase subunit 1 were highly conserved, revealing near-absence of local variation within Stylops. Ovaries of hosts with male Stylops contained poorly developed eggs while those of hosts with female Stylops were devoid of visible eggs, which might be due to a higher protein demand of female Stylops. Male Stylops, which might have a more energy-consuming development, led to a reduction in head width of their hosts. Host masculinization was present in the leaner shape of the metabasitarsus of stylopized females and is interpreted as a by-product of manipulation of the host's endocrine system to shift its emergence. Stylopization intensified tergal hairiness, most strongly in hosts with female Stylops, near the point of parasite extrusion, hinting towards substance-induced host manipulation.


Assuntos
Abelhas , Animais , Feminino , Masculino , Abelhas/anatomia & histologia , Abelhas/genética , Abelhas/parasitologia , Interações Hospedeiro-Parasita , Larva , Caracteres Sexuais , Neópteros/anatomia & histologia , Neópteros/genética , Neópteros/crescimento & desenvolvimento
7.
Mol Ecol ; 32(14): 3859-3871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194687

RESUMO

Domesticated honeybees and wild bees are some of the most important beneficial insects for human and environmental health, but infectious diseases pose a serious risk to these pollinators, particularly following the emergence of the ectoparasitic mite Varroa destructor as a viral vector. The acquisition of this novel viral vector from the Asian honeybee Apis ceranae has fundamentally changed viral epidemiology in its new host, the western honeybee A. mellifera. While the recently discovered Lake Sinai Viruses (LSV) have been associated with weak honeybee colonies, they have not been associated with vector-borne transmission. By combining a large-scale multi-year survey of LSV in Chinese A. mellifera and A. cerana honeybee colonies with globally available LSV-sequence data, we investigate the global epidemiology of this virus. We find that globally distributed LSV is a highly diverse multi-strain virus, which is predominantly associated with the western honeybee A. mellifera. In contrast to the vector-borne deformed wing virus, LSV is not an emerging disease. Instead, demographic reconstruction and strong global and local population structure indicates that it is a highly variable multi-strain virus in a stable association with its main host, the western honeybee. Prevalence patterns in China suggest a potential role for migratory beekeeping in the spread of this pathogen, demonstrating the potential for disease transmission with the man-made transport of beneficial insects.


Assuntos
Abelhas , Vírus de RNA , Varroidae , Animais , Humanos , Abelhas/parasitologia , Abelhas/virologia , China/epidemiologia , Vírus de RNA/genética , Varroidae/virologia , Vírus
8.
Trends Parasitol ; 39(6): 487-488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967341
9.
J Adv Res ; 44: 1-11, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725182

RESUMO

INTRODUCTION: Host shift of parasites may have devastating effects on the novel hosts. One remarkable example is that of the ectoparasitic mite Varroa destructor, which has shifted its host from Eastern honey bees (Apis cerana) to Western honey bees (Apis mellifera) and posed a global threat to apiculture. OBJECTIVES: To identify the genetic factors underlying the reproduction of host-shifted V. destructor on the new host. METHODS: Genome sequencing was conducted to construct the phylogeny of the host-shifted and non-shifted mites and to screen for genomic signatures that differentiated them. Artificial infestation experiment was conducted to compare the reproductive difference between the mites, and transcriptome sequencing was conducted to find differentially expressed genes (DEGs) during the reproduction process. RESULTS: The host-shifted and non-shifted V. destructor mites constituted two genetically distinct lineages, with 15,362 high-FST SNPs identified between them. Oogenesis was upregulated in host-shifted mites on the new host A. mellifera relative to non-shifted mites. The transcriptomes of the host-shifted and non-shifted mites differed significantly as early as 1h post-infestation. The DEGs were associated with nine genes carrying nonsynonymous high-FST SNPs, including mGluR2-like, Lamb2-like and Vitellogenin 6-like, which were also differentially expressed, and eIF4G, CG5800, Dap160 and Sas10, which were located in the center of the networks regulating the DEGs based on protein-protein interaction analysis. CONCLUSIONS: The annotated functions of these genes were all associated with oogenesis. These genes appear to be the key genetic determinants of the oogenesis of host-shifted mites on the new host. Further study of these candidate genes will help elucidate the key mechanism underlying the success of host shifts of V. destructor.


Assuntos
Abelhas , Parasitos , Varroidae , Animais , Abelhas/parasitologia , Genoma , Genômica , Oogênese/genética , Parasitos/genética , Varroidae/genética
10.
J Invertebr Pathol ; 195: 107848, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36343669

RESUMO

The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.


Assuntos
Abelhas , Parasitos , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Cucurbita , New England , Polinização , Prevalência , Estados Unidos , Trypanosoma/fisiologia , Microsporídios/fisiologia , Tenericutes/fisiologia
11.
J Insect Sci ; 22(4)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924428

RESUMO

The alfalfa leafcutting bee Megachile rotundata Fabricius (HYMENOPTERA: Megachilidae) is an important pollinator for multiple agricultural seed commodities in the United States. M. rotundata is a solitary cavity nesting bee that forms brood nests where its larvae can develop. During the developmental stages of growth, brood can be preyed upon by multiple different fungal pathogens and insect predators and parasitoids, resulting in the loss of the developing larvae. Larval loss is a major concern for alfalfa (Medicago sativa L.) seed producers because they rely on pollination services provided by M. rotundata. Reduced pollination rates result in lower yields and increased production costs. In the present study, we examined the taxonomic composition of organisms found within M. rotundata brood cells using a multiplex PCR assay which was developed for the detection of bacterial, fungal, and invertebrate pests and pathogens of M. rotundata larvae. Known pests of M. rotundata were detected, including members of the fungal genus Ascosphaera, the causative agent of chalkbrood. The presence of multiple Ascosphaera species in a single brood cell was observed, with potential implications for chalkbrood disease management. The multiplex assay also identified DNA from more than 2,400 total species, including multiple predators and pathogenetic species not previously documented in association with M. rotundata brood cells.


Assuntos
Abelhas/parasitologia , Medicago sativa , Reação em Cadeia da Polimerase Multiplex , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Abelhas/fisiologia , Larva , Medicago sativa/parasitologia , Polinização , Sementes
12.
J Exp Biol ; 225(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726829

RESUMO

Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.


Assuntos
Nosema , Parasitos , Animais , Abelhas/parasitologia , Aprendizagem , Memória , Nosema/patogenicidade , Parasitos/patogenicidade , Olfato
13.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137130

RESUMO

The American beekeeping industry continually experiences colony mortality with annual losses as high as 43%. A leading cause of this is the exotic, ectoparasitic mite, Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae). Integrated Pest Management (IPM) options are used to keep mite populations from reaching lethal levels, however, due to resistance and/or the lack of suitable treatment options, novel controls for reducing mites are warranted. Oxalic acid for controlling V. destructor has become a popular treatment regimen among commercial and backyard beekeepers. Applying vaporized oxalic acid inside a honey bee hive is a legal application method in the U.S., and results in the death of exposed mites. However, if mites are in the reproductive stage and therefore under the protective wax capping, oxalic acid is ineffective. One popular method of applying oxalic is vaporizing multiple times over several weeks to try and circumvent the problem of mites hiding in brood cells. By comparing against control colonies, we tested oxalic acid vaporization in colonies treated with seven applications separated by 5 d (35 d total). We tested in apiaries in Georgia and Alabama during 2019 and 2020, totaling 99 colonies. We found that adult honey bees Linnaeus (Hymenoptera: Apidae), and developing brood experienced no adverse impacts from the oxalic vaporization regime. However, we did not find evidence that frequent periodic application of oxalic during brood-rearing periods is capable of bringing V. destructor populations below treatment thresholds.


Assuntos
Abelhas/parasitologia , Ácido Oxálico/farmacologia , Controle de Pragas , Varroidae , Animais , Criação de Abelhas , Varroidae/efeitos dos fármacos , Volatilização
14.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137134

RESUMO

Varroa destructor (Mesostigmata: Varroidae) is arguably the most damaging parasitic mite that attacks honey bees worldwide. Since its initial host switch from the Asian honey bee (Apis cerana) (Hymenoptera: Apidae) to the Western honey bee (Apis mellifera) (Hymenoptera: Apidae), Varroa has become a widely successful invasive species, attacking honey bees on almost every continent where apiculture is practiced. Two haplotypes of V. destructor (Japanese and Korean) parasitize A. mellifera, both of which vector various honey bee-associated viruses. As the population of Varroa grows within a colony in the spring and summer, so do the levels of viral infections. Not surprisingly, high Varroa parasitization impacts bees at the individual level, causing bees to exhibit lower weight, decreased learning capacity, and shorter lifespan. High levels of Varroa infestation can lead to colony-wide varroosis and eventually colony death, especially when no control measures are taken against the mites. Varroa has become a successful parasite of A. mellifera because of its ability to reproduce within both drone cells and worker cells, which allows populations to expand rapidly. Varroa uses several chemical cues to complete its life cycle, many of which remain understudied and should be further explored. Given the growing reports of pesticide resistance by Varroa in several countries, a better understanding of the mite's basic biology is needed to find alternative pest management strategies. This review focuses on the genetics, behavior, and chemical ecology of V. destructor within A. mellifera colonies, and points to areas of research that should be exploited to better control this pervasive honey bee enemy.


Assuntos
Abelhas/parasitologia , Infestações por Ácaros/veterinária , Varroidae , Animais , Criação de Abelhas , Controle de Pragas , Estações do Ano , Varroidae/genética
15.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137137

RESUMO

Honey bees are eusocial animals that exhibit both individual and social immune responses, which influence colony health. This is especially well-studied regarding the mite Varroa destructor Anderson and Trueman (Parasitiformes: Varroidae), a parasite of honey bee brood and disease vector. Varroa was introduced relatively recently to Apis mellifera L. (Hymenoptera: Apidae) and is a major driver of the catastrophic die-off of honey bee colonies in the last decade. In contrast, the original host species, Apis cerana Fabricius (Hymenoptera: Apidae) is able to survive mite infestations with little effect on colony health and survival. This resilience is due in part to a newly identified social immune response expressed by developing worker brood. Varroa infested female A. cerana brood experience delayed development and eventually die in a process called 'social apoptosis'. Here, an individual's susceptibility to Varroa results in colony level resistance. We tested for the presence of the social apoptosis trait in two Varroa resistant stocks of A. mellifera (Pol-line and Russian) with different selection histories and compared them to a known Varroa-susceptible stock (Italian). We assessed the survival and development of worker brood reared in either highly or lightly infested host colonies, then receiving one of three treatments: uninfested, experimentally inoculated with a Varroa mite, or wounded to simulate Varroa damage. We found that response to treatment was only differentiated in brood reared in lightly infested host colonies, where experimentally infested Russian honey bees had decreased survival relative to the mite-susceptible Italian stock. This is the first evidence that social apoptosis can exist in Western honey bee populations.


Assuntos
Abelhas/parasitologia , Resistência à Doença , Varroidae , Animais , Abelhas/imunologia , Feminino , Especificidade de Hospedeiro , Infestações por Ácaros/veterinária
16.
PLoS One ; 17(1): e0263273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100308

RESUMO

Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.


Assuntos
Abelhas/parasitologia , Abelhas/virologia , Comportamento Animal/fisiologia , Saúde , Interações Hospedeiro-Patógeno , Fenômica , Animais , Canadá , Geografia , Mel , Modelos Lineares , Parasitos , Fenótipo , Tamanho da Amostra , Estações do Ano , Comportamento Social , Varroidae
17.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066590

RESUMO

Various stocks of honey bees (Apis mellifera L. (Hymenoptera: Apidae)) employ multiple mechanisms to control varroa mite (Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae)) infestations. Identification of trait-associated genes and markers can improve efficiency of selective breeding. Dopamine receptors show promise in this regard in their association with numerous traits in honey bees, high plasticity, and indicated association with varroa resistance through QTL analysis. We assessed the relationship between exposure to mite-infested brood and gene expression of the honey bee dopamine receptors, Amdop1, Amdop2, and Amdop3, in bees and stocks with known levels of varroa resistance, in Spring 2016 (VSH vs Italian) and Summer 2019 (Pol-line vs Italian). Relative mRNA expression levels varied both by honey bee stock and before/after exposure to varroa-infested brood, in 7-, 10-, and 14-day-old bees. However, the trials revealed contrasting patterns in expression of the three dopamine receptors. In 2016, downregulation was evident in VSH bees, but varied by days post-emergence and by gene. The 2019 trial showed upregulation post-exposure in both stocks, and at all ages, for Amdop1, Amdop2, and Amdop3, with the exception of 14 d Italian bees for Amdop2 and Amdop3. Stock comparison in 2019 showed upregulation of all three dopamine-like receptors in post-exposure bees of all ages. Season and associated differences in mite loads may have contributed to the differences observed across trials. Differential expression of all three dopamine receptors suggests a role for the dopaminergic system in varroa resistance and suggests that further characterization of these receptors for breeding potential is warranted.


Assuntos
Abelhas , Proteínas de Insetos/genética , Receptores Dopaminérgicos , Varroidae , Animais , Abelhas/genética , Abelhas/parasitologia , Fenótipo , Receptores Dopaminérgicos/genética , Estações do Ano
18.
Res Vet Sci ; 144: 1-10, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032751

RESUMO

The ectoparasitic mite Varroa destructor affects honey bee colony health and survival negatively, thus compelling beekeepers to treat their colonies every year. A broadly used mite control regimen is based on two organic molecules: formic and oxalic acids. To ensure optimal efficiency, several applications of these acids at pre-defined time points are recommended. These recommendations are mainly based on experiments conducted under controlled conditions. Studies evaluating the effectiveness under natural field conditions are lacking. We enrolled 30 beekeepers in a longitudinal study in three cantons in Switzerland and monitored the management and health of their colonies for two years. We assessed compliance with mite control recommendations and measured V. destructor infestation rates, indexes of colony productivity (brood size and honey harvest), and colony mortality in 300 colonies. We observed a 10-fold increased risk of colony death when beekeepers deviated slightly from the recommended treatment regimen compared to compliant beekeepers (odds ratio: 11.9, 95% CI: 2.6-55.2, p = 0.002). The risk of colony death increased 25-fold in apiaries with substantial deviations from the recommendations (odds ratio: 50.4, 95% CI: 9.7-262.5, p < 0.0001). The deviations led to increased levels of V. destructor infestation ahead of wintering, which was likely responsible for colony mortality. After communicating the apparent link between low compliance and poor colony survival at the end of the first year to the beekeepers, we observed better compliance and colony survival in the second year. Our results highlight the positive impact of compliance with the recommended V. destructor treatment regimen on the health of honeybee colonies and the need to better communicate the consequences of deviating from the recommendations to improve compliance. Compliance also occasionally decreased, which hints at concept implementation constraints that could be identified and possibly addressed in detail with the help of social sciences to further promote honey bee health.


Assuntos
Criação de Abelhas , Abelhas/parasitologia , Ectoparasitoses/prevenção & controle , Varroidae , Animais , Criação de Abelhas/métodos , Ectoparasitoses/veterinária , Estudos Longitudinais , Estações do Ano , Suíça , Varroidae/patogenicidade
19.
Anim Genet ; 53(1): 156-160, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729804

RESUMO

Recapping of Varroa destructor-infested brood cells is a trait that has recently attracted interest in honey bee breeding to select mite-resistant Apis mellifera colonies. To investigate the genetic architecture of this trait, we evaluated a sample of A. mellifera mellifera colonies (N = 155) from Switzerland and France and performed a genome-wide association study, using a pool of 500 workers per colony for next-generation sequencing. The results revealed that two QTL were significantly (P < 0.05) associated with recapping of V. destructor-infested brood cells. The best-associated QTL is located on chromosome 5 in a region previously found to be associated with grooming behaviour, a resistance trait against V. destructor, in A. mellifera and Apis cerana. The second best-associated QTL is located on chromosome 4 in an intron of the Dscam gene, which is involved in neuronal wiring. Previous research demonstrated that genes involved in neuronal wiring are associated with recapping and varroa sensitive hygiene. Therefore, our study confirms the role of a gene region on chromosome 5 in social immunity and simultaneously provides novel insights into genetic interactions between common mite resistance traits in honey bees.


Assuntos
Abelhas/genética , Comportamento de Nidação , Locos de Características Quantitativas , Varroidae/fisiologia , Animais , Abelhas/parasitologia , França , Estudo de Associação Genômica Ampla , Reprodução , Suíça
20.
Sci Rep ; 11(1): 23214, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853367

RESUMO

There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Metagenoma , Varroidae/fisiologia , Animais , Abelhas/microbiologia , Abelhas/virologia , Genoma Bacteriano , Genoma de Inseto , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...